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LETTER TO THE EDITOR

On the nonlinear Fock description of quantum systems
with quadratic spectra
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Lukin Research Institute of Physical Problems, Zelenograd, Moscow, 103460, Russia

Received 28 February 1996

Abstract. The nonlinear version of the Fock approach, developed previously for systems with
(extended) equidistant spectra (Eleonsky V M and Korolev V G 1995 J. Phys. A: Math. Gen.
28 4973), is also shown to describe systems with quadratic spectra. Some general properties of
shift operators for such spectra are studied.

It is found, in particular, that families of shift operators related to the generators of the
algebrasu(1, 1) as well as supersymmetry ladder operators arise naturally in that approach in a
unified way.

In [1–3] the nonlinear generalization of the Fock approach [4] (based on introducing
analogues of number operators nonlinear in the Hamiltonian as well as analogues of shift
operators nonlinear in momentum) was presented. It allows one to investigate a wide
range of one-dimensional potentials of the Schrödinger problem with prescribed strictly
discrete spectra. The structure of the spectra was determined as one or a combination
of several equidistant subsequences bounded below (and, possibly, above) and shifted
arbitrarily relative to each other. As a particular case, equidistant spectra with a gap of
given size and location were studied in detail.

In the present letter we demonstrate the possibility of an analogous approach to the
Schr̈odinger problem for systems with quadratic spectra. As an example, that approach is
used for a description of the system with the Pöschl–Teller potential [5]. It has been revealed
that the spectrum shift operators, which arise traditionally as thesu(1, 1) generators (see, for
example, [6] and references therein) as well as the supersymmetry (SUSY) ladder operators
for the same model can be obtained in the framework of the present method as solutions of
one and the same basic equation (1).

Previously in [8] the statement was made that solutions of the operator equation

[[H,L], L] = cL2 c = constant (1)

(H is a Hamiltonian) include a class of quantum models characterized by a constant second-
order difference of the eigenvalues ofH :

En+2 − 2En+1 + En = c (2)

(i.e. having the quadratic spectrumEn ∼ (n + n0)
2) much as the equation [H,L] = ωL

defines a class of models related to the constant first-order differenceEn+1 − En = ω.
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However, whereas in the latter case the operatorL is always a shift operator of the solutions
(not necessarily eigenstates) of the Schrödinger equation, the action ofL obeying (1) on a
solution of the Schr̈odinger problem may be more complicated.

Define the action ofL on the eigenelements(ψn(x), En) of the Schr̈odinger problem
for the HamiltonianH by the expression

Lψn(x) =
∑
k

Cn,kψk(x) (3)

Substitution of that expression into (1) leads to the following system of equations:∑
k

Cn,kCk,n′ (En′ − 2Ek + En − c) = 0 n′ = 0, 1, . . . (4)

which is an analogue of the well known selection rules(En′ −En −ω)Ck,n′ = 0, originated
by the linear operator equation [H,L] = ωL.

• Let Cn,k 6= 0 only for k = n + 1 (in this caseL is a shift operator). Then (4) takes the
form

Cn,n+1Cn+1,n′ (En′ − 2En+1 + En − c) = 0 n′ = 0, 1, . . . (5)

and is non-trivial only forn′ = n+ 2, taking the form of condition (2).
• Now let L transform the wavefunctionψn(x) into a pair of neighbouring eigenfunctions,
i.e. Cn,k 6= 0 for k = n± 1. In that case (4) takes the form

Cn,n−1Cn−1,n′ (En′ − 2En−1 + En − c)+ Cn,n+1Cn+1,n′ (En′ − 2En+1 + En − c) = 0

n′ = 0, 1, . . . (6)

and leads to non-trivial conditions in the casesn′ = n±2 andn′ = n. The first two of them
lead to the invariance condition for the second-order difference (2); in the casen′ = n we
get

Cn,n−1Cn−1,n (2En − 2En−1 − c) = Cn+1,nCn,n+1 (2En+1 − 2En + c). (7)

Combining this with condition (2), rewritten as 2(En+1 −En)− c = 2(En −En−1)+ c, we
find that the expression

In ≡ Cn,n+1Cn+1,n
{
4(En+1 − En)

2 − c2
}

(8)

is a spectrum invariantin the sense thatIn = constant∀ n.
• Finally, let L transform the wavefunctionψn(x) into a linear combination of three
neighbouring wavefunctions, i.e.Cn,k 6= 0 for k = n− 1, n, n+ 1. In that case equation (4)
takes the form

Cn,n−1Cn−1,n′ (En′ − 2En−1 + En − c)+ Cn,nCn,n′ (E′
n − En − c)

+Cn,n+1Cn+1,n′ (En′ − 2En+1 + En − c) = 0 n′ = 0, 1, . . . (9)

and leads to non-trivial conditions in five cases:n′ = n± 2, n′ = n± 1, andn′ = n. The
first two cases lead to condition (2); the next pair leads to the same condition

Cn,n (En+1 − En − c) = Cn+1,n+1 (En+1 − En + c). (10)

Finally, in the casen′ = n we obtain the relation

Cn,n−1Cn−1,n (2En − 2En−1 − c)+ Cn+1,nCn,n+1 (2En − 2En+1 − c) = c C2
n,n (11)

which is a generalization of the spectrum invariant (8).
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These three cases (the last of them includes, obviously, the two previous particular
cases) seem to exhaust all representations ofL in the form (3) such that condition (2) is
not violated (which is also consistent with the analysis of quadratic algebras in [9, 10]).

Consider a representation of (1) in the decomposed form

[H,L] = L� [�,L] = cL. (12)

Here� is an arbitrary (and, generally, not self-adjoint) operator; existence of the operator
inverse toL is assumed. Let(ψ,E) be some solution of the Schrödinger problem for the
operatorH : Hψ = Eψ . Then the functionψ ′ ≡ Lψ is a solution of the Schrödinger
problem with the operatorH ′ ≡ H −�, corresponding to the valueE′ = E − c:

(H −�)ψ ′ = (E − c)ψ ′ ψ ′ ≡ Lψ. (13)

Thus, in the general caseL transforms solutions of the Schrödinger problem with the
operatorH into solutions of the Schrödinger problem with another operatorH (possibly,
not self-adjoint). If� = �† thenL† transforms solutions of the Schrödinger equation with
the operatorH into solutions of the Schrödinger equation with the operatorH ′ = H + �

and valueE′ = E. In this caseLL†ψ and L†Lψ again obey the original Schrödinger
equation with the operatorH and the initial value of the parameterE.

Consider in detail the following class of characteristic operators:� = �(H). In that
caseL translates the solutionψ of the equationHψ = Eψ into the functionψ ′ ≡ Lψ

being the solution of the equationHψ ′ = E′ψ ′. From (12) it follows that

E′ = E +�(E) �(E′)−�(E) = c. (14)

(It is easy to verify that equation (2) is satisfied for any�.) ExcludingE′ we get the
functional equation�(E + �(E)) − �(E) = c, which can be set equal to the operator
equation for�(H):

�(H +�(H))−�(H) = c (15)

(the latter can also be obtained directly from (12)). Writing an analogue of (12) forL†, we
arrive at the second functional relation for�(H):

�(H −�(H)+ c)−�(H) = −c. (16)

Thus, the first of equations (12) supplemented by the conditions (15), (16) for�(H)

leads to models related to the invariance condition for the second-order difference.
Let us find a solution of the functional equations (15), (16). From (15) we get a

difference equation for the inverse functionH(�):

H(�+ c)−H(�) = �. (17)

Its solution is

H = (�− c/2)2

2c
+ F(�)+H0 H0 = constant (18)

whereF is an arbitrary periodic function with periodc: F(�+c) = F(�). LetF = H0 ≡ 0,
c > 0. Then the particular solution of (15), (16) is

�(H) = c

2
±

√
2cH E > c/2. (19)

Then the decomposed system (12) takes the form

[H,L] = L
( c

2
±

√
2cH

)
(20)

[
√
H,L] = ±

√
c/2 L. (21)
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In this case the functional dependence between equations (12) expressed by condition (15)
means that one can obtain equation (20) from (21), but the reverse is not true; in other
words, under such a choice of�(H) the original equation (1) is directly reduced to (21).
The latter equation can be treated as a formal analogue of the equation [H,L] = ωL related
to the conditionEn′ − En = ω [8, 1–3].

Indeed, the mappingE ⇒ E′ generated by equation (21) has the form
√
E′ −

√
E = ±

√
c/2 = constant E > c/2 (22)

and realizes the invariance condition for the second-order difference (2) if executed at
eigenelements of the Schrödinger problem.

On the other hand, equation (20) is more general than (21), so it can also describe
systems with spectra that do not obey (2). It is easy to show that, apart from the two above
monotonic sequences

√
E′ = √

E ± √
c/2, E > c/2, equation (20) admits the sequence√

E′ = √
c/2 − √

E, E < c/2, which describes a cycle of two possible energy values.
This points to the possibility (characteristic of the supersymmetry approaches) of describing
in the framework of the present method systems with spectra consisting of both an infinite
and a finite number of elements.

We come now to the quantum model obeying (20). In the one-dimensional case this
equation is solvable for the operatorsL of the formL(p, x) = L1/2(x)

√
H+L1(x)p. There

arises the HamiltonianH with the P̈oschl–Teller potential

H = 1

2
p2 + l(l − 1)

cos2 ξ
(23)

and the operatorL

L(±) = ∓
√

2 sinξ
√
H + i

√
α cosξ p (24)

(hereafter we use the notationα ≡ c/2, ξ ≡ √
c x; p = −i d/dx). Note that both the

analysis of the problem on the basis of the algebrasu(1, 1) representations (see, for example,
the summary tables in [6]) and another, less traditional approach shown in [7], lead to the
same result.

The eigenelements of the corresponding Schrödinger problem are

ψn(x) = cosl ξ C(ν)n (sinξ) En = α(n+ l)2 (25)

where C(ν)n (z) are the ultraspherical (Gegenbauer) polynomials (for brevity we use
unnormalized wavefunctions).

The action ofL(±), L
†
(±) on the eigenfunctions is determined as follows:

L(+)ψn = −√
α(n+ 1) ψn+1 (26)

L
†
(+)ψn = −√

α

(
n+ 2(l − 1)− l − 1

n+ l

)
ψn−1 (27)

L(−)ψn = +√
α(n+ 2l + 1) ψn−1 (28)

L
†
(−)ψn = +√

α

(
n+ 2 − l − 1

n+ l

)
ψn+1. (29)

Thus, their action is reduced to a shift along the spectrum; the operatorsL(+), L
†
(−) are up-

shift operators (in indexn) whereasL(−), L
†
(+) are down-shift operators. We can introduce
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one-parametric families (linear envelopes) of operators shifting up (L
(γ )
u ) and down (L(γ )u ):

L(γ )u = L(+) + γL
†
(−) (30)

L
(γ )

d = L(−) + γL
†
(+). (31)

In the symmetric case (γ = 1) these operators take a particularly simple form:

L(1)u = LS(+) L
(1)
d = LS(−) LS(±) ≡ √

α sinξ ± [
√
H, sinξ ] (32)

and their action is determined by the following expression:

LS(±)ψn = √
α

{
1 ± l − 1

n+ l

}
ψn±1. (33)

Following Fock’s approach [4], we consideranalogues of the number (of quanta)
operatorsN(±) ≡ L(±)L

†
(±), Ñ(±) ≡ L

†
(±)L(±). They arenot polynomial in H (unlike

the number operators considered in [1–3]) and are determined as follows:

N(±) = (±√
H − √

α)(H ∓ √
αH − U0)

±√
H

(34)

Ñ(±) = ±√
H(H ± √

αH − U0)√
α ± √

H
U0 ≡ l(l − 1). (35)

It is easy to verify that these operators satisfy both the general relation [N,L] =
L(Ñ − N) used in [1–3] and its particular casẽN(H) = N(� + H) for the reduced
equations (12); for this purpose the following easily proved equality can be used:[

1√
H
,L

]
= −L

√
α√

H(
√
H + √

α)
. (36)

As can be seen from (34), for the system with the Hamiltonian (23) the analogue of the
number operatorN can be rewritten in the form

N =
2∑

k=−1

hk

(√
H

)k
= H ∓ 2

√
αH − (U0 − α)± √

α
U0√
H
. (37)

Then, using the relatioñN(H) = N(� + H) we get Ñ = ∑2
k=−1 hk

(√
�+H

)k
. The

form of the characteristic operator�(H) = α + 2
√
αH allows us to remove the common

radical sign in the above expression (
√
�+H ≡ √

α + √
H ) and to arrive again at (35).

The expressions for the number operators defined on the base of thesymmetriccombined
operatorsLS(±) also have the simple form

NS
(±) = ÑS(∓) ≡ LS(+)L

S†
(+) = α + αU0

±√
H(

√
α ∓ √

H)
. (38)

Note also that the operatorL(+)L(−) is self-adjont:

L(+)L(−) = L
†
(−)L

†
(+) = −H +

√
αH + U0. (39)

Following the generalized Fock approach [1–3] we define the initial element for the
mapping of eigenelements of the Schrödinger problem by the condition for the eigenvalue
ν of the number operatorN to vanish. The eigenvalue of the operatorN(+) (as well as the
eigenvalue of the operatorNS

(+)) vanishes at the only pointE = αl2; this value, in accordance
with (25), corresponds to the ground state of the system. TheL-mapping constructed on
that state using the operator (24) generates an unbounded quadratic sequenceEn exhausting
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the energy spectrum of the system. Sincel > 1, all the points of that sequence lie in the
regionE > α ≡ c/2 that corresponds to sequences preserving the second-order difference.

The casec < 0, related to the ‘soliton’ potential of finite depth and to the quadratic
spectrum with a finite number of levels, is described analogously.

The question arises of whether it is possible to extend the class of quantum models
using, as in [8, 1–3], operatorsL in the form of polynomials (in the momentum) whose
coefficients are functions of the operator

√
H? It turns out that the search for solutions

to (20) on the assumption thatL has the form

L =
M∑
m=0

hm(x)
(√
H

)m
+

M−1∑
m=0

fm(x) p
(√
H

)m
for the caseM = 3 again leads to the same system withH of the form (23) and

L = L(0)
(

1 + β
√
H + γH

)
β, γ ∈ R

whereL(0) is the ‘basic’ operator (24). This result appears quite natural if we take into
account the following evident property of equations (12): if some operatorL is a solution
then any operator of the formLF(H) is also a solution.

The above-considered operatorL of the form (24) contained the operator
√
H and was

related to the characteristic operator�(H) of the form (19). Let us abandon the condition
for � to be self-adjoint and construct the operatorL as a solution of equation (1) (or of the
system (12)) in the form of a polynomial of degreeM in the momentump only. Unlike the
equation [H,L] = ωL, ω = constant [8], even forM = 2 equation (1) leads to a substantial
overdetermination of a system of equations for the coefficients of that polynomial.

In the caseM = 1 we get the following system of equations for the potentialU(x) and
coefficients of the polynomialL = L0(x)+ L1(x) p:

L1L
′′
1 − 2(L′)2 = L2

1 L1L
′′
0 − 3L′

0L
′
1 − 2L1L0 = 0

L1(L1U
′)′ = −{(L′

0)
2 + L2

0} − i{L′′
1L

′
0 + L′

1L0}
where a prime denotes a derivative with respect to the variableξ : ξ = √

c(x − x0). The
solution of that system is

L1 = A

cosξ
L0 = m

1 − sinξ
+ l

cos2 ξ
(40)

U(x) = − 1

A2

(
m2 +ml + iAm/2 + l2/2

) + (
m2 +ml + iA(m+ l)/2

)
sinξ

cos2 ξ

+ k

A
sinξ + U0. (41)

Consider the particular casem = −l (and letA = −i without loss of generality). Then
we obtain

H(l) = 1

2
p2 + l(l − 1)

cos2 ξ
L(l) = − i

cosξ
p − l

sinξ

cos2 ξ
(42)

These operators satisfy equations (12) with the not self-adjoint operator�(l):

�(l) = −i tanξ p +
(

1

2
− l

cos2 ξ

)
. (43)

(Note thatL(l) and�(l) are linked by the relation�(l) = sinξ L(l) + ( 1
2 − l).)



Letter to the Editor L247

In accordance with what has been said above about the action ofL when the
characteristic operator� is not a function of the Hamiltonian, the operatorL(l) (42) is
not an operator of shift along the spectrum of one and the same operatorH ; its action is
determined by the expression

ψ ′ ≡ L(l)ψ(l)
n = − 2l

cosξ
ψ
(l+1)
n−1 (44)

whereψ ′ is a solution of (13).
Note, however, that the operatorL(l) can be written in the form

L(l) ≡ 1

cosξ
3(l) 3(l) = −i p − l tanξ. (45)

The operator3(l) (differing from L(l) only by a weight function) acts on the wavefunction
ψ(l)
n as follows:

3(l)ψ(l)
n = −2l ψ(l+1)

n−1 (46)

i.e. it transforms thenth state in the potential with the parameterl into the (n−1)th state
in the potential with the parameterl+1. This operator arises in the SUSY approach to the
description of such spectra (see, for example, the review [6]) as a ladder operator. Unlike
L(l) obeying the main equation (1), the operator3 ≡ 3(l) satisfies the following equations:

33† = 2H(l+1) − l2 3†3 = 2H(l) − l2 (47)

or, in closed form w.r.t.3: [H(l),3] = −(l/ cos2 ξ)3.
Thus, we have obtained two kinds of operatorsL as solutions of equation (1) for

the same Hamiltonian (23). The first of them is represented by the combined operators
(30), (31) that are linear envelopes of the operatorsL(±), L

†
(±) (24). These operators are

linear functions of
√
H andp ≡ −i d/dx; in the decomposed system (12) they are associated

with the characteristic operator� = �(H) of the form (19). The above operators perform
a shift along the spectrum of the same Hamiltonian; they are related to the generators of
the algebrasu(1, 1) for this system.

The second type of operators is represented by the operatorL(l) that is a linear function
of p only; it corresponds to the not self-adjoint characteristic operator� (43). Up to a
weight functionL(l) is related to the ladder operator3, which arises in the SUSY approach
and performs a shift both in the eigenstate numbern and in the structure parameterl (two
analogous classes of operators arise also in the case of the modified Pöschl–Teller potential;
see, for example, [11]).

We have shown that for the operators of the first kind one can build analogues of number
operators and use the generalized Fock approach [1–3] for the determination and description
of non-equidistant spectra.
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